TIPS: Targeted Interventions for Proficiency in Science
Main Site »
RPDP Home
Contact Us
Tips Home
Middle School »
High School »
Life Science

Content Benchmark L.8.C.4
home / life science / organisms and their environment /

Life Science
Heredity
Structure of Life
Organisms and Their Environment
  L.8.C.1
  L.8.C.2
  L.8.C.3
  L.8.C.4
Diversity of Life
Content Areas
Nature of Science (NOS)
Life Science
Earth Science
Physical Science

Students know inter-related factors affect the number and type of organisms an ecosystem can support. E/S

Ecology is the study of interactions between living organisms in a given area and their surroundings. Organisms are impacted by their environment and in turn, impact their environment. The living part of this world is referred to as the biotic community. The surrounding nonliving environment is known as the abiotic world. The primary interest of ecologists is how the biotic and abiotic factors affect the number and types of organisms that are or can live in a given environment.

Biomes of the World
Biomes are recognized as the broadest area of interactions in ecology. These areas such as deserts, rainforests or grasslands are defined by two major climatic factors: precipitation and temperature. The chart below shows how these two factors determine the biome type in any region of the world.

Figure 1. This pyramid shows the relationship between
temperature and precipitation in the formation of biomes.
(From http://www.bbc.co.uk/schools/gcsebitesize/biology/
livingthingsenvironment/0habitatsandpopsrev3.shtml
)

Other local factors such as topography, wind patterns and ocean currents will have modifying effects on regions. The world distribution of biomes can be seen on the map below.

Figure 2. Distribution of World Biomes.
(From http://www.bbc.co.uk/schools/gcsebitesize/biology/
livingthingsenvironment/0habitatsandpopsrev3.shtml
)

In addition to particular climate factors, each biome is defined by its major vegetation type, which influences the types of animals and other organisms living in that biome.

For more information on particular characteristics of each major biome, visit the following websites.

Missouri Botanical Gardens has student friendly descriptions of the plants and animals of each of the major world biomes along with other characteristics. The webpage is http://www.mbgnet.net/index.html

Major Biomes of the World contains detailed information on each of the major world biomes. This is a site for higher level students and teachers. The website is available at http://www.runet.edu/~swoodwar/CLASSES/GEOG235/biomes/main.html

Blue Planet World Biomes is another site that contains detailed information on specific plants and animals found within each biome. The website is available at
http://www.blueplanetbiomes.org/world_biomes.htm

Biomes of North America describes biomes specific to North America. The website can be accessed by linking to http://www.utexas.edu/depts/grg/huebner/Spring2003/grg306c/biomes1.htm

Biomes can be subdivided into smaller units called ecosystems.
For detailed information on ecosystems, refer to MS TIPS Benchmark L.8.C.2

Growth of Populations
An organism’s maximum ability to increase its population size is referred to as its biotic potential. This occurs under optimal conditions such as no limits to food, water, living space, diseases and predation. This type of growth pattern is called exponential growth and is illustrated with a J-shaped curve.


Figure 3. J-shaped curve showing exponential growth.
(From http://www.biologycorner.com/bio4/notes/popgrowth.php)

While populations may experience this type of growth, it is often only for brief periods. Seldom do all of these optimal conditions exist at any one time. More often, an organism’s growth meets environmental resistance which results in decreases in birth rates or increases in death rates. These decreases or increases are related to environmental conditions such as availability of food or predation. In this case, the growth of the population is represented by an S-shaped curve.


Figure 4. S-shaped curve showing a population has reached its carrying capacity.
 (From http://www.biologycorner.com/bio4/notes/popgrowth.php)

Abiotic and Biotic Factors Affecting Population Growth
In ecological terms, this environmental resistance produces the carrying capacity of an environment. The carrying capacity is the size of the population or community that can be supported by the surrounding environment. In determining the carrying capacity of any environment, biologists identify limiting factors to population growth. These either promote or hinder growth and can be divided into abiotic or biotic factors.

Abiotic factors are nonliving aspects of the environment that affect the ability of organisms to survive and reproduce. These often refer to the chemical or physical factors in an ecosystem as seen in the list below.

Abiotic factors:

  1. Temperature
  2. Precipitation
  3. Soil pH
  4. Soil nutrients
  5. Space availability
  6. Length of growing season
  7. Light availability
  8. Water availability

Abiotic factors cannot only affect the growth or size of a population, but can also affect the growth of individuals as seen in the illustration below.

Figure 5. Wind effect on tree growth.
(From http://www.thewildlandpress.com/images/wind_tree.jpg)

 

Biotic factors are aspects or actions of living organisms that affect the ability of organisms to survive and reproduce. Disease, competition, predation or behaviors of living organisms are examples of biotic factors.

Once a population reaches its carrying capacity, the size of a population might fluctuate due to interplay of the limiting factors within the environment.


Figure 6. A population can fluctuate around the carrying capacity.
(From http://www.gov.mb.ca/conservation/sustain/carcap.pdf)

An environmental carrying capacity is subject to change. Environments may degrade resulting in the shrinking of the carrying capacity. In this case, the environment is no longer able to support a population of organisms that formerly have lived in an ecosystem on a sustainable basis. No population can live beyond the environment's carrying capacity for very long. Over grazing by herbivores or the introduction of a new disease or predator may reduce the carrying capacity. This may lead to a drop in the number of organisms in the ecosystem. After this drop in the population, a new carrying capacity may be established. Large game parks in Africa face this problem. Protection of large animals like elephants can cause severe damage to the environment when elephant populations become too high.


Figure 7. This graph illustrates a change in the carrying capacity over time.
(From http://www.gov.mb.ca/conservation/sustain/carcap.pdf)

Since ecology focuses on the interaction of organisms with their environment and to other living organisms, these factors (abiotic and biotic) cannot be viewed in isolation. Both types are also referred to as limiting factors, since they determine the types and number of organisms in the environment. For example, plant growth is restricted in the tundra due to the short, cool summers, coupled with harsh winters and permafrost in the soil. Trees cannot survive under these conditions. However, the plants that are present grow low to the ground and tend to be annuals.

The actions of living organisms will have similar effects. Take predation as an example. In certain environments, keystone predators are important in restricting the population sizes of some organisms and preventing the disappearance of other populations. This can be seen in the kelp forests along the Pacific coastline in California. Young kelps are grazed by sea urchins. If left unchecked, the sea urchins can overgraze the kelp beds leading to their reduction in size. This normally does not happen because in this situation, the sea otter acts as a keystone predator and preys upon the sea urchins keeping their populations in check. This allows a kelp forest to maintain itself and provide a habitat for many other organisms.


Figure 8. California Sea Otter.
(From  http://upload.wikimedia.org/wikipedia/commons/thumb/f/f8/
Sea-otter-morro-bay_13.jpg/800px-Sea-otter-morro-bay_13.jpg
)


Figure 9. Purple Sea Urchin.
(From http://www.scuba-equipment-usa.com/marine/
NOV04/images/Heliocidaris_erythrogramma.jpg
)

 


Figure 10. Pacific Kelp Forest.
(From http://www.fossweb.com/CA/modules3-
6/Environments/activities/monterey/content_old.html
)

Another keystone predator along the California coastline is the sea star (Piaster) which helps to keep the population of mussels (Mytilus) in intertidal zones in check. By limiting the mussel populations, other organisms can maintain a presence in the tidal pools. In many habitats in North America, the wolf and coyote are also considered to be keystone predators by keeping rodent populations in check.

Teachers can find other examples of keystone predators at the following website http://science.jrank.org/pages/3758/Keystone-Species-Keystone-predators-herbivores.html

Predation can also lead to fluctuations in population size of both predator and prey. The Canadian lynx and snowshoe hare is a classic example of how populations of predators and prey can fluctuate. As seen in Figure 11, the population peaks for these two organisms is offset. The rise in the lynx population occurs only after the hare population has begun to rise. Then as the lynx population increases, predation upon the hare reduces its population. Other limiting factor like climate or disease could also affect the numbers of both organisms.


Figure 11. Fluctuation of Canadian Lynx and Snowshoe Hare.
(From http://cache.eb.com/eb/image?id=6543&rendTypeId=4)


Figure 12. Lynx chasing snowshoe hare.
(From http://www-rohan.sdsu.edu/~jmahaffy/courses/f00/
math122/lectures/qual_de2/images/mr285.jpg
)

Another interesting organism that acts as an important biotic limiting factor in many communities is the fungus Mycorrhizae (from the Greek meaning “fungus root”). This filamentous fungus (the white “threads” in the illustration below) aids the plant’s ability to absorb nutrients, especially phosphorus from the soil. The root hairs alone often do not provide enough surface area to absorb all the nutrients needed by plants. A majority of plants have developed a symbiotic relationship with the Mycorrhizae. Without this fungus, the ability to sustain themselves would be reduced in many plant species.


Figure 13. Mycorrhiza hyphae surrounding root hairs.
(From http://www.extension.iastate.edu/newsrel/garden/mycorrhiza2.jpg)

Teachers can find more information on Mycorrhiza at the following links http://herbarium.usu.edu/fungi/funfacts/Mycorhiz.htm
and, http://www.extension.iastate.edu/newsrel/2004/apr04/apr0427.html

Competition for resources is both interspecific and intraspecific. Members of the same species (intraspecific) may compete for the same resources in an ecosystem; however members of different species (interspecific) may also compete for these same resources. This has lead to the ecological idea known as an ecological niche. This idea was first developed in the early part of the 1900’s by G.F. Gause. In experiments using paramecium, Gause developed the ecological principle known as competitive exclusion. In this situation, one species out competes another for available resources and drives the other to extinction. Thus no two organisms can occupy the same niche in the same community.

Today we can think of a niche has how an organism makes its living as described in this quote by Eugene Odum.

The ecological niche of an organism depends not only on where it lives but also on what it does. By analogy, it may be said that the habitat is the organism's "address", and the niche is its "profession", biologically speaking.

Odum - Fundamentals of Ecology - W B Saunders 1959

Thus no two organisms can obtain resources in exactly the same fashion, nor occupy the same habitats in a community. Competition places selective pressures on organisms to develop traits or adaptations that allow them to survive without directly competing with other species. This selective pressure is one of the agents of biological evolution.

Adaptations to Selected Environments
In order to survive in various environments, plants and animals have developed numerous adaptations to aid in their survival. Different desert plants have developed one of three main adaptive strategies to survive. These include succulence, drought tolerance and drought avoidance. Examples of each strategy can be seen in the table below.

Table 1. Adaptive Strategies of Desert Plants

Succulence

Drought Tolerance

Drought Avoidance

Absorb large amounts of water in a short period of time

Shed leaves during dry periods

Grow annually, grow and die quickly. Shed seeds for next season

Have extensive system horizontal, shallow roots

Larger, deeper roots

Germinate when soil moisture conditions are optimal

Have a thick waxy cuticle

Develop mechanism to absorb moisture from dry soils

Not all seeds germinate, even under optimal conditions

Stomata open at night rather than the day

 

 

Teachers can find further explanation of desert plant strategies at http://www.desertmuseum.org/programs/succulents_adaptation.html

Teachers can find additional information on desert adaptations at http://www.desertusa.com/du_plantsurv.html

Plants and animals in each biome have developed specific adaptations for survival. To survive the harmful effects of fire, grasses have their growing regions located below the surface of the soil. Therefore, the growing regions are protected from the fires that periodically burn across the grasslands. In another example, deciduous trees drop their leaves in the fall to avoid damage to during the cold winters. Also, cold winters reduce or stop the ability of deciduous tree to carryout photosynthesis. In a sense, these trees “hibernate” to overcome their ability to function normally during winter conditions. In addition, some organisms may migrate or hibernate to avoid harsh winter conditions.

Teachers can find more about specific adaptations of plants and animals to major biomes at http://www.cotf.edu/ete/modules/msese/earthsysflr/desertP.html

The Missouri Botanical Gardens has an excellent website that discusses plant adaptations to major biomes that is very student-friendly at
http://www.mbgnet.net/bioplants/adapt.html

As we view organisms in the environment, we cannot study them in isolation. Ecology is defined as the study of how organisms interact with other living and nonliving things in their environment. Thus, to understand the growth and decline of organisms in an environment, we need to identify the abiotic and biotic limiting factors affecting those organisms. In addition, the study of how organisms are adapted to their particular environment will give insight as to how these limiting factors affect these same organisms.

back to top


Content Benchmark L.8.C.4

Students know inter-related factors affect the number and type of organisms an ecosystem can support. E/S


Common misconceptions associated with this benchmark

1. Students have the misconception that all factors are limiting, except the most abundant one. The most limiting factor is the least abundant one.

This misconception results from the misunderstanding about the interrelatedness of limiting factors in the environment. While light is abundant and necessary for photosynthesis in plants, magnesium is a trace element in the soil and necessary for chlorophyll production. Without magnesium plants cannot produce chlorophyll and without chlorophyll plants cannot absorb light. Without light chlorophyll has no function in plants. These two limiting factors and others like water and carbon dioxide allow photosynthesis to occur in plants. Remove any one and photosynthesis is not possible. Most processes of life are controlled by a complex interaction of factors. Some are abundant and some are not, but as illustrated with photosynthesis, remove any one and the process does not proceed.

More on this misconception can be found at http://ecomisconceptions.binghamton.edu/posintro.htm


2. Students incorrectly think that adaptations are developed by individuals in response to the needs of the individual.

Adaptive traits of organisms are a result of evolutionary changes that have evolved over time. Individual organisms cannot will themselves to change. This process of change is a result of natural selection where those organisms that are the best adapted, survive and pass their traits (genes) on to the next generation. Slowly, over time a population or species becomes adapted to a particular environment.

More on this misconception can be found at http://ecomisconceptions.binghamton.edu/adaptation.htm


3. Students incorrectly assume some ecosystems have limitless resources and provide an opportunity for limitless growth of a population.

Resources in nature are finite and while nature does have ability to recycle essential elements, the process is slow. Over grazing of grasslands by herbivores may not allow time for sufficient number of plants to regenerate. This can be brought about by excessive numbers of herbivores. Drought or other changes in the weather can lead to a reduction in the producers, which in turn will reduce the numbers of all other organisms. The result is a balance in any ecosystem between the number of organisms that live there and the availability of resources.

More on this misconception can be found at http://ecomisconceptions.binghamton.edu/adaptation.htm

4. Students incorrectly think that populations increase until limits are reached, then they crash and go extinct.

Populations may show periods of constant growth, decline or stabilization depending on the limiting factors present. The initial introduction of a population into a new environment may result in exponential growth until the carrying capacity is reached. This is often followed by a stabilized population which may fluctuate around this carrying capacity. This stabilized population may remain as long as the limiting factors themselves do not change. A drought or other destruction to the environment may reduce the carrying capacity, therefore the populations of organisms present. Extinction may only occur if the environment changes drastically enough, so that, the organism no longer has traits that allow it to adapt to this new environment. Normally once adapted to an environment organisms may remain for thousands of years.

More on this misconception can be found at http://ecomisconceptions.binghamton.edu/adaptation.htm


5. Students incorrectly believe a size change in one population will have little effect over another population of the same food web because the chains are spread out.

While organisms often depend on more than one food source in a food web, a significant drop in one organism could affect another. An example of this can be seen in the case of keystone predators.  The loss of a keystone predator could result in one of the prey populations to over populate a given ecosystem. In turn the over population of the prey could cause a reduction in its food source. The above discussion of sea otters and kelp forest is a classic example of this occurring.

More on this misconception can be found at http://departments.weber.edu/sciencecenter/biology%20misconceptions.htm


6. Students incorrectly believe that competition (competitive exclusion principle) leads to less diversity in an ecosystem.

While over the short term competition may lead to the reduction in numbers of some species, over time, diversity increases. Competition in nature can act as a selective pressure, with the result that over time species may develop a change in their fundamental and/or realized niches.

More on this misconception can be found at
http://www.esapubs.org/bulletin/backissues/087-2/pdfweb87_2/ecol101_misconceptions.pdf

back to top


Content Benchmark L.8.C.4

Students know inter-related factors affect the number and type of organisms an ecosystem can support. E/S


Sample Test Questions

1st Item Specification: Understand that inter-related factors include both living (biotic) and non-living (abiotic) elements.

Depth of Knowledge Level 1

  1. Which of the following is a biotic factor?
    1. The pH of a soil sample.
    2. Bacteria present in a water sample.
    3. Levels of nutrients present in soil.
    4. The changing of tides in the ocean.
  1. Which of the following would NOT be considered an abiotic activity?
    1. The melting of ice in the spring.
    2. Oxygen dissolving in moving water.
    3. Production of air pollution by humans.
    4. The process of photosynthesis.

Depth of Knowledge Level 2

  1. Fire is most important in maintaining what biome listed below?
    1. Grasslands
    2. Tundra
    3. Deciduous forests
    4. Deserts
  1. What paired factors below are the most important in determining the type of vegetation that is present in a natural ecosystem?
    1. Soil and water
    2. Landforms and soil
    3. Water and temperature
    4. Temperature and soil

2nd Item Specification: Predict and recognize the effect of a change in the inter-related factors in an ecosystem.

Depth of Knowledge Level 1

  1. Use the diagram below to answer the next question.

The graph below shows the changes of two fish populations in a pond.

Source: http://www.regentsprep.org/Regents/core/questions/
questions.cfm?Course=BIOL&TopicCode=6d

Which of the following would NOT be a reason for the
decline in Fish A?
  1. Fish A produced less offspring than Fish B.
  2. Fish A could not compete with Fish B for the same food.
  3. Fish B began to prey upon Fish A.
  4. Fish B resisted a new disease but A did not
  1. Use the graphs below to answer the next question.
1 2 3 4


A herbivore has been living in balance with its environment for years. Then a drought occurred and lasted for several years. Which graph from above would best represent the population of this herbivore during this period?

    1. Graph 1
    2. Graph 2
    3. Graph 3
    4. Graph 4

 
Depth of Knowledge Level 2

  1. Use the diagram below to answer the next question.

Which of the following outcome is MOST likely to occur if a disease reduced the number of frogs in this food web? The number of
    1. foxes would remain the same.
    2. snakes would be reduced.
    3. grasses would increase.
    4. beetles would drop.
  1. A farmer decides to place less nitrogen fertilizer on his corn fields. Which of the following consequences would LEAST likely to happen?
    1. His corn plants would show decreased growth.
    2. His nearby pond would show greater algae growth.
    3. The number of weeds in the fields would decrease.
    4. There would be a greater need for other essential elements.

3rd Item Specification:  Understand that populations of organisms have specific adaptations that help them survive in an ecosystem and explain why an organism could/could not survive in a particular environment (e.g. due to specific adaptations, carrying capacity, and available biotic and abiotic resources.

Depth of Knowledge Level 1

  1. Which of the following adaptations would LEAST likely help a plant survive in a hot, dry environment?
    1. Open their stomata at night.
    2. Grow long shallow roots.
    3. Have needles instead of leaves.
    4. Have thin large leaves on branches.
  1. Which of the following adaptations would LEAST likely help an animal survive in a dry environment?
    1. Be nocturnal.
    2. Spend time in shady places.
    3. Keep a constant body temperature.
    4. Drink little water.                
               

Depth of Knowledge Level 2

  1. Use the brief habitat description below to answer the next question.

This habitat is characterized with low rainfall and hot days. Evenings are cool and short.

Which adaptation below would be the LEAST helpful to organisms living in this habitat?

    1. Plants have long roots just below the surface.
    2. Plants have large leaves to capture sunlight.
    3. Animals are active at night rather than the day.
    4. Animals drink small amounts of water.
  1. Use the brief habitat description below to answer the next question.

This habitat has short summers and long winters. The ground is frozen much of the year. Summers are cool and windy.

Which adaptation would be the LEAST helpful to organisms living in this habitat?

    1. Animals migrate to other habitats in the winter.
    2. Animals will hibernate for most of the winter.
    3. Plants often grow close to the ground.
    4. Plants have many long and deep roots.

 
4th Item Specification: Know living organisms compete for resources in an ecosystem and the amount of available resources limits the carrying capacity of an ecosystem.

Depth of Knowledge Level 1

  1. Which of the following factors would LEAST effect the carrying capacity of an ecosystem?
    1. Amount of food available to living organisms
    2. Presence of water
    3. Available habitats for shelter
    4. Temperature of the atmosphere
  1. Which of the following factors would have the greatest impact on reducing the carrying capacity of an ecosystem?
    1. Competition from another organism.
    2. The population size remains stable.
    3. Available habitats for shelter.
    4. Stable rainfall and temperatures.
  1. Use the graph below to answer the next question. The graph shows the number of organisms in an area over time.


Source: http://www.gov.mb.ca/conservation/sustain/carcap.pdf

During which year did the population reach its carrying capacity?
    1. Year 2
    2. Year 3
    3. Year 6
    4. Year 7

Depth of Knowledge Level 2

  1. Use the carrying capacity graph below to answer the next question.

This graph shows the carrying capacity for a population of grass eating animals on the Great Plains of the United States.


Source: http://www.gov.mb.ca/conservation/sustain/carcap.pdf

Which explanation below is the best reason why the carrying capacity dropped during years 4 to 7?
    1. The animals began to migrate to another area in year 4.
    2. The animals began to have fewer offspring between years 3 and 4.
    3. A group of non-grass eating animals moved into this area in beginning in year 3.
    4. The area began to experience drought conditions in year 4.
  1. Use the graph below to answer the next question.

Source: http://www.biologycorner.com/resources/carrying_capacity_deer.gif

Which of the following situations MOST likely produced this population of deer on WallaWalla Island?
    1. Deer predators were removed from the island before the deer arrived.
    2. The deer overgrazed the grasses immediately upon their arrival to the island.
    3. After a period of time the deer adjusted to the available food on the island.
    4. The deer contracted a new disease just after their arrival on the island

Constructed Response Question L.8.C.4

1.  The data below shows the growth of rabbits in a new grassland habitat.

Year

Population Size

1

0

2

2

3

3

4

5

5

12

6

23

7

24

8

25

9

24

10

18

A.  Use the data above to graph the growth of the rabbits over the ten year period. Be sure to correctly label the X and Y axes.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B.  What is meant by the term carrying capacity? Identify on the graph where the carrying capacity for the rabbits occurs.

C.  Identify two abiotic and two biotic factors that can affect the carrying capacity of this grassland habit and explain their affect.

back to top


Content Benchmark L.8.C.4

Students know inter-related factors affect the number and type of organisms an ecosystem can support. E/S


Answers to Sample Test Questions

  1. B, DOK Level 1
  2. D, DOK Level 1
  3. A, DOK Level 2
  4. C, DOK Level 2
  5. A, DOK Level 1
  6. C, DOK Level 1
  7. B, DOK Level 2
  8. B, DOK Level 2
  9. D, DOK Level 1
  10. C, DOK Level 1
  11. B, DOK Level 2
  12. D, DOK Level 2
  13. D, DOK Level 1
  14. A, DOK Level 1
  15. B, DOK Level 1
  16. D, DOK Level 2
  17. C, DOK Level 2

Constructed Response L.8.C.4 Score Rubric:

 
 
  

3 points

 Response addresses all parts of the question clearly and correctly.

The student’s graph matches the graph shown above. The student’s graph must show the title and correct labels for the x-axis and y-axis. Define the carrying capacity as the number of organisms that an environment or ecosystem can support. The student should indicate the years between 6 and 10 would represent the carrying capacity. The student could list the climate or specific aspects like temperature or precipitation (rainfall); soil type or soil nutrients; or availability of space or water. Biotic factors include predation, diseases and competition.

2 points

 Response addresses all parts of the question and includes only minor errors.

1 point

 Response does not address all parts of the question.

0 Points

 Response is totally incorrect or no response provided.

back to top


Content Benchmark L.8.C.4

Students know inter-related factors affect the number and type of organisms an ecosystem can support. E/S

Intervention Strategies and Resources

The following is a list of intervention strategies and resources that will facilitate student understanding of this benchmark.

1. Biome Adaptation Games

There are several websites that have quizzes or games that allow students to test their knowledge of how plants and animals are adapted to various biomes around the world.

Interactive adaptations games can be found at
http://ecokids.earthday.ca/pub/eco_info/topics/climate/adaptations/index.cfm and
http://ecokids.earthday.ca/pub/eco_info/topics/climate/adaptation_quiz/index.cfm

Students can test their ability to matching biomes to the plants that are found there by taking the matching quiz at http://www.mbgnet.net/teachers/plants.html


2. The Biology of Plants

The Missouri Botanical Gardens website has several lab activities that teachers can download which demonstrate various plant adaptations. The “Biology of Plants” activity is available at
http://www.mbgnet.net/bioplants/downloads/places.pdf


3. Animal Adaptations

This link will take you to the “Animals Adaptations” activity which is a web-based exercise that has students discover animal adaptations to selected biomes.
http://www.sciencenetlinks.com/pdfs/adapt_actsheet.pdf


4. Science Netlinks: Yellowstone Wolves

The activity at this website explores the introduction of wolves back into Yellowstone National Park. Students use the Internet to explore relationships between habitats and species (specifically the gray wolf and those species with which it must coexist) as well as the effect of physical and human forces on living things and their environment.

http://www.sciencenetlinks.com/lessons.cfm?
Grade=6-&BenchmarkID=5&DocID=78


5. Graphing Exercises to Teach Carrying Capacity

There are a number of activities that teachers can do to help teach their students about the idea of carrying capacity and limiting factors.  The activities listed below involve graphing and mathematical manipulation.

Biology Graph: Carrying Capacity involves answering questions about a graph illustration on carrying capacity. The activity is available at
http://www.algebralab.org/practice/practice.aspx?
file=Reading_CarryingCapacity.xml

An activity at this website asks student to make interpretations about several graphs illustrating various situations involving carrying capacity. To view the activity, go to
http://www.gov.mb.ca/conservation/sustain/carcap.pdf


6. Carrying Capacity

This link will take you to an activity that requires students to formulate and test hypotheses related to the carrying capacity of wildlife populations. The only materials needed are a bag of dried beans and a kitchen timer. The activity is available at
http://www.na.fs.fed.us/spfo/pubs/misc/eco/Carrying_Capacity.pdf


7. Murder Ewe Wrote

In this activity, students are asked to solve an ecological mystery about the disappearance of bighorn sheep. This activity is available at http://www.na.fs.fed.us/spfo/pubs/misc/eco/Murder_Ewe_Wrote.pdf


8. Environmental Check-up

This simulation asks students to discover how limiting factors make bighorn sheep an indicator species. This activity is available at http://www.na.fs.fed.us/spfo/pubs/misc/eco/Environmental_Checkup.pdf


9. My Science Box: Lynx and Hare Populations

Students can explore real data that effects the population cycles of the Canadian lynx and snowshoe hare. To access this activity, follow the link
http://www.mysciencebox.org/harelynx


10. Project Wild

Project Wild contains a number of activities that will help teachers with concepts from this benchmark. More information on Project Wild can be found at their website or the Nevada Division of Wildlife at their Learn & Participate webpage.

Project Wild - http://www.projectwild.org/
Nevada Division of Wildlife - http://www.ndow.org/learn/programs/

back to top

Benchmark
Support Pages

Misconceptions:
Click Here
Sample Questions:
Click Here

Intervention Strategies & Resources:
Click Here

Benchmark Related Vocabulary

Ecosystem
Food chain
Influence
Organism