TIPS: Targeted Interventions for Proficiency in Science
Main Site »
RPDP Home
Contact Us
Tips Home
Middle School »
High School »
Earth Science

Content Benchmark E.8.C.4
home / earth science / earths composition and structure /

Earth Science
Atmospheric Process and Water Cycle
Solar System and Universe
Earths Composition and Structure
  E.8.C.1
  E.8.C.2
  E.8.C.3
  E.8.C.4
  E.8.C.5
  E.8.C.6
  E.8.C.7
  E.8.C.8
Content Areas
Nature of Science (NOS)
Life Science
Earth Science
Physical Science

Students know the very slow movement of large crustal plates result in geological events.  E/S

The first journal question posed to students in an Introductory Geology class might be “If weathering and erosion have been wearing away Earth’s surface for billions of years then why is Earth’s surface not flat?” This question generates more reflection prior to being able to formulate a response – i.e. rocks are really hard material, maybe some types cannot be broken down, and more time would be needed to make it flat; possibly many more millions or billions of years. Although the answer to this question seems more straightforward today, it is at the heart of this benchmark.

Earth’s Internal Structure
The Earth is composed of primarily three basic layers; crust, mantle, and core. Understanding the very slow movement of large crustal plates requires a brief review of the properties of these layers. Earth’s crust is the thin, rigid outermost layer which varies in thickness from 5 kilometers under the oceans (oceanic crust) to 70 kilometers thick under portions of the continents (continental crust). Below the rigid crust is the mantle. This complex layer contains most of the Earth’s mass and is composed of primarily iron, magnesium, aluminum, and silicate compounds which are solid but can deform slowly in a plastic-like manner. The high temperature of the core radiates thermal energy to the upper layers. This heat transfer to the upper layers is believed to provide the mechanism for plate movement, i.e. plate tectonics.

http://pubs.usgs.gov/gip/dynamic/graphics/FigS1-1.gif

Figure 1. Cutaway view showing the internal structure of the Earth. This view drawn to scale demonstrates that the Earth’s crust literally is only skin deep. Right: a view not drawn
to scale to show Earth’s three main layers (crust, mantle, and core) in more detail.
(From http://pubs.usgs.gov/gip/dynamic/inside.html)

For detailed information on the Structure of Earth’s Interior visit
MS TIPS Benchmark E.8.C.3.

Earth’s Lithosphere is composed of crust (both oceanic and continental) and the stiffer part of the upper mantle. The lithosphere is broken into several large and small plates (Figure 2). These plates move about on the sturdy liquid portion of the upper mantle called the asthenosphere. The rigid lithospheric plates float on the asthenosphere, although more complicated; much the same way ice floats on water.


Figure 2. Map showing Earth’s main lithospheric plates and some of the
world’s earthquake occurrences (red dots).
(From http://www.iris.edu/edu/onepagers/Hi-Res/OnePager2.pdf)


Powering the Movement of Plates
The driving mechanism believed responsible for plate movement is heat transfer within Earth’s interior. The source of the intense heat powering this great task is radioactivity deep within Earth’s mantle and primordial heat from Earth’s formation. Figure 3 provides a visual of the inferred convection currents set up in the mantle - areas of intense heat rise, cool, and eventually sink back down in a continuous cycle.

http://mediatheek.thinkquest.nl/~ll125/images/convect.jpg

Figure 3. Convection currents – large convection systems in the mantle
may carry along plates of the lithosphere like a conveyor belt.
Image by: Colin Salmon, Dorling Kindersley
(From http://mediatheek.thinkquest.nl/~ll125/en/fullconvect.htm)

For more information on the mechanism for Plate Tectonics visit,
http://www.ucmp.berkeley.edu/geology/tecmech.html and, http://www.windows.ucar.edu/tour/link=/earth/interior/how_plates_move.html&edu=high

For an advanced discussion of Plate Tectonics visit HS TIPS Benchmark E.12.C.2


Geologic Events Resulting From Plate Movement
Understanding that Earth’s crust is broken into several large and many smaller plates and convection currents are providing a force on these plates to move them, several effects can result. Geologic events are Earth changes that occur rapidly such as faults, earthquakes and volcanoes or changes that take considerably longer time such as mountain building, polar shifts, and global warming. A brief overview of faults, earthquakes, volcanoes, and mountain building will be presented, as they relate directly to “the slow movement of large crustal plates results in geological events.”


Faults
A fault is a fracture in the Earth’s crust along which two blocks have slipped with respect to each other. Faults are classified into three groups depending on how they move. Normal, reverse (or thrust), and transform (or lateral) faults result from different directions of stress building from plate movement. For example, a normal fault results from an extension stress “pulling” crust in different directions, while reverse fault results from compression stress pushing crust together, as shown in the figure below.

http://wapi.isu.edu/Geo_Pgt/Mod03_PlanetaryEvo/images/Faults.GIF
Figure 4. Three types of faults
(From http://wapi.isu.edu/Geo_Pgt/Mod03_PlanetaryEvo/images/Faults.GIF)


In addition to faults, folding of rock layers provide evidence of tectonic activity. When large pieces of the Earth’s crust move laterally, they create huge compressional forces that can bend or even break rocks. Here, the sedimentary rock layers show an anticlinal fold, in which the layers bend downward from the crest.

T045002A
Figure 5. Compressional force created folded rocks.
V. Englebert/Photo Researchers, Inc.
(From http://encarta.msn.com/media_461530095/folded_rocks.html)

For additional information on the three fault types and images of real world examples of each, visit National Oceanic and Atmospheric Administration/ National Geophysical Data Center Images at

http://www.iris.washington.edu/gifs/slides/faults/slideshow/index.htm

 
Earthquakes
An earthquake is a sudden movement of the Earth, caused by the abrupt release of strain that has accumulated over a long time. For hundreds of millions of years, the forces of plate tectonics have shaped the Earth as the plates that form the Earth's surface slowly move over, under, and past each other. Sometimes the movement is gradual. At other times, the plates are locked together, unable to release the accumulating energy. When this energy elevates to the elastic limit of the rocks, they will break. If the earthquake occurs in a populated area, it may cause many deaths and injuries and extensive property damage.

http://t3.pacific.edu/teams/M031606/focus_epicenter.jpg
Figure 6. Anatomy of an earthquake
(From http://t3.pacific.edu/teams/M031606/focus_epicenter.jpg)

For a 20 page online booklet that explains the nature and causes of earthquakes, describes techniques used to detect, record, measure, and predict seismic disturbances go tohttp://pubs.usgs.gov/gip/earthq1/

For a comprehensive review of earthquakes, along with a geology overview of earthquake wave types and measurement visit PhysicalGeography.net at
http://www.physicalgeography.net/fundamentals/10m.html

For a two page Natural Hazards Fact Sheet on Earthquakes presented by the USGS, visit http://pubs.usgs.gov/fs/2006/3016/2006-3016.pdf


Volcanoes
More than 80% of the Earth’s surface is volcanic in origin. The ocean floor is composed almost entirely of basalt, an extrusive igneous rock. Countless eruptions of gas, ash, and lava have created the seafloor and some of the mountains that make up Earth’s landscape. Volcanoes are often referred to as windows into the upper mantle of Earth. Pressure within the mantle forces magma to the surface through areas of weakness in the crust. The lava they erupt, in many times, comes from 10’s of Kilometers below the surface. They are geological events that shape the planet and often times their activity triggers earthquakes.

http://www.tetonwyo.org/em/docs/images/volcano_diagram_usgs.gif
Figure 7. Anatomy of a volcano
(From http://www.tetonwyo.org/em/docs/images/volcano_diagram_usgs.gif)

For a comprehensive review of volcanoes, along with a geology overview of the three classifications of volcanoes visit PhysicalGeography.net at
http://www.physicalgeography.net/fundamentals/10n.html

For a two page Natural Hazards Fact Sheet on Volcanoes presented by the USGS, visit
http://pubs.usgs.gov/fs/2006/3014/2006-3014.pdf

Volcanoes and Earthquakes are found in similar locations around the Earth, primarily controlled by the location of lithospheric plate boundaries - zones of crustal weakness, and regions of increased stress resulting from relative plate movement. The following two images illustrate this relationship.

http://www.geophysics.rice.edu/plateboundary/DPB_map_gifs/quakes.50percent.gif

Figure 8. Earthquake occurrences plotted on World Map
(From http://www.geophysics.rice.edu/plateboundary/
DPB_map_gifs/quakes.50percent.gif
)

http://www.geophysics.rice.edu/plateboundary/volcano.72.gif 

Figure 9. Volcanoes Plotted on World Map.
(From http://www.geophysics.rice.edu/plateboundary/volcano.72.gif)

For an article titled Plate Tectonics II: Plates, Plate Boundaries, and Driving Forces visit
http://www.visionlearning.com/library/module_viewer.php?mid=66


Mountain
Building
Most mountains were created from tectonic forces that elevate, fold, and fault solid lithospheric material. As the plates are slowly pushed and/or pulled, strain builds up in the rigid crust until portions of the crust are uplifted or subducted. Mountains can be created from volcanic activity and build to high elevations from the extrusion of immense amounts of lava. However, the majority of mountains present across our planet resulted from tectonic activity.

For a comprehensive review of mountain building, along with a geology overview of the evolution of mountains visit PhysicalGeography.net at
http://www.physicalgeography.net/fundamentals/10k.html

Figure 10 provides an excellent overview of the geologic events that result from the slow movement of large crustal plates. In the middle section of the diagram oceanic plate (crust) collides with continental plate (crust) – forming a subduction zone. The subducted oceanic plate melts as it is pushed deeper into the mantle, providing a source of magma fueling the volcanic mountain range on the surface. On the far right side of the image, a continent-continent plate collision zone is shown. As these two plates are pushed together, a faulted and folded mountain system is formed.

http://www.jenningsk12.net/WE/peimann/Science/Earth%20Movements/subduction.jpg
Figure 10. Plate motion and resulting geologic events
(http://www.jenningsk12.net/WE/peimann/
Science/Earth%20Movements/subduction.jpg
)

For a comprehensive description of plate motion and types of plate boundaries visit the United States Geological Survey’s online publication This Dynamic Earth: the Story of Plate Tectonics at http://pubs.usgs.gov/gip/dynamic/understanding.html#anchor15039288

Now to come back to the journal question posed in the introduction of this benchmark; If weathering and erosion have been wearing away Earth’s surface for billions of years then why is Earth’s surface not flat? As we have seen, there are both destructive and constructive forces shaping the planet. Earthquakes, volcanoes, and mountain building are geologic events that result from the very slow movement of large crustal plates. Although earthquake and volcanic events may be “destructive” to society, they are responsible for creating much of the topography present on our planet. While it is true that many natural forces are working to wear our planet away such as weathering and erosion, there is the slow and continual movement of Earth’s crustal plates from plate tectonics and eruption of volcanic material creating new landforms.

back to top


Content Benchmark E.8.C.4

Students know the very slow movement of large crustal plates result in geological events.  E/S

Common misconceptions associated with this benchmark

1. Students may believe that continents do not move or that they randomly drift about the Earth.

Considering the slow rate at which lithopsheric plates move – a rate of a few centimeters per year (about the rate your fingernails grow), it is understandable that students would have difficulty relating to this concept. To tell them that the formation of the Rocky Mountains (Laramide Orogeny) began 70 to 80 million years ago and ended some 40 million years ago or that Nevada has been geographically located south of the equator in the geologic past would be challenging to accept for middle school science students as well as most adults without a strong science background.

5globes.gif
Figure 11. Changing locations of the continents over time
(From http://pubs.usgs.gov/gip/dynamic/historical.html)

For additional information related to this misconception
and background to address it visit

http://www.cst.cmich.edu/users/Franc1m/esc105/lectures/plate.htm and, http://departments.weber.edu/sciencecenter/
earth%20science%20misconceptions.htm


2. Students may believe that tectonic plates move around on top of a sea of molten lava.

This misunderstanding is not applicable to only middle school science students, many adults believe that below Earth’s crust lies a sea of molten magma, ready to break through and erupt at any instant. While it is a fact that temperature increases with depth below Earth’s surface (shown by the red line in the figure), what is often times overlooked (or misunderstood) is that pressures also increase with depth. As pressure increases, so too does the melting point of the material keeping the material in the solid state at these higher temperatures.

petpeeves1.jpg
Figure 12. Temperature and pressure relationship to depth
(http://scienceblogs.com/highlyallochthonous/
2008/01/annoying_misconceptions_in_geo.php
)

For more information on this and other geology misconceptions visit
http://scienceblogs.com/highlyallochthonous/2008
/01/annoying_misconceptions_in_geo.php


3. Students have many misconceptions related to earthquakes.

The Southern California Earthquake Center has prepared a comprehensive resource separating fact from fiction, and dispelling common earthquake myths. A few examples of each are provided here.

  • Fiction: There can be a magnitude 10.5 earthquake
  • Fiction: California will split apart from the rest of the US and become an island/oceanfront property in Barstow
  • Fiction: The earth will open and swallow a train, my car, my town, or me
  • Fiction: You can prevent large earthquakes by making lots of small ones, or by “lubricating” the fault with water

To access the complete list of fiction beliefs and the facts behind them visit
http://www.earthquakecountry.info/10.5/MajorMovieMisconceptions.html

  • Myth: Big earthquakes always happen in the morning
  • Myth: Beachfront property in Arizona
  • Myth: We have good building codes so we must have good buildings
  • Myth: We can cause earthquakes, nuclear explosions can start earthquakes

To access the complete list of earthquake myths and the correct explanations visit
http://www.earthquakecountry.info/10.5/myths.html

back to top


Content Benchmark E.8.C.4

Students know the very slow movement of large crustal plates result in geological events.  E/S

Sample Test Questions

1st Item Specification: Know earthquakes, volcanoes, and mountain building are caused by heat from convection currents in the upper mantle powering the movement of plates in a continuous process.

Depth of Knowledge Level 1

  1. Use the diagram below to answer the question.

Cross-Section of Earth

(From http://dn.redwoods.edu/coursenotes/renner/
geo_images/plate_tectonics/mantle_convection.jpg
)

  1. The arrows drawn in Earth’s interior represent
    1. conduction.
    2. convection.
    3. radiation.
    4. insolation.
  1. A large belt of mountain ranges and volcanoes surrounds the Pacific Ocean and is often referred to as the Ring of Fire. What events are most closely associated with these mountains and volcanoes?
    1. Earthquakes
    2. Hurricanes
    3. Tornadoes
    4. Blizzards
  1. The diagram below shows the heating of water.

  1. The primary method of heat transfer occurring within the water is called
    1. insolation.
    2. radiation.
    3. conduction.
    4. convection.


Depth of Knowledge Level 2

  1. Many scientists think that convection currents in the mantle between South America and Africa caused the separation of the two continents and the formation of the Mid-Atlantic Ridge.


  1. Which diagram best represents the currents described in this theory?
    1. Diagram 1
    2. Diagram 2
    3. Diagram 3
    4. Diagram 4
  1. Use the diagrams below showing the same region of the Earth’s surface at two different time intervals to answer the question that follows.

  1. Diagrams I and II show the same region of the Earth’s surface at two different times in the geologic past. Diagram I was 250 million years ago and Diagram II was the same region 150 million years ago. Which statement best explains the basic cause of the changes that occurred in this region?
    1. Temperature changes caused melting of polar ice caps.
    2. Meteor impact on the crust caused widening of the valley.
    3. Mantle convection currents caused crustal movement.
    4. Weathering and erosion caused widening of the valley


2nd Item Specification: Identify geologic events that result from movements of crustal plates.

Depth of Knowledge Level 1

  1. Use the diagram below to answer the question.

World Map of Major Earthquake Epicenters

(From http://www.iris.edu/edu/onepagers/Hi-Res/OnePager2.pdf)

  1. Major earthquakes occur
    1. in specific belts within the crust.
    2. along the mantle-core boundary.
    3. in the centers of the continents.
    4. randomly over the Earth’s surface.
  1. Use the diagram below to answer the question.


(From http://www.iris.edu/edu/onepagers/Hi-Res/OnePager2.pdf)

  1. Each dot on the map represents an Earth scientist’s data. These dots most likely represent zones of frequent
    1. fossil correlations.
    2. crustal activity.
    3. hurricane paths.
    4. meteor impacts.


Depth of Knowledge Level 2

  1. Use the diagram below to answer the question.

World Map of Major Earthquake Epicenters

(From http://www.iris.edu/edu/onepagers/Hi-Res/OnePager2.pdf)

  1. How would a map showing the location of active volcanoes compare to the map showing the location of earthquake epicenters?
    1. Only a small percentage of volcanoes would be in the same regions as the epicenters.
    2. A large percentage of volcano locations would be in the same regions as the epicenters.
    3. There would be no match between the locations of the volcanoes and epicenters.
    4. The location of the volcanoes and epicenters would only match in the ocean regions.
  1.  Use the diagram below to answer the question.


(From http://www.harpercollege.edu/
mhealy/geogres/maps/physgif/india.gif
)

  1. What type of plate boundary is established between India and the Eurasian Plate?
    1. Ocean-Ocean convergence resulting in the formation of a trench.
    2. Ocean-Ocean convergence resulting in the formation of an underwater
      mountain range.
    3. Continent-Continent convergence resulting in the formation of a trench. 
    4. Continent-Continent convergence resulting in the formation of a mountain range.


Constructed Response E.8.C.4

1. Use the diagrams below to answer the questions.

 Earthquakes Plotted on World Map

(From http://www.geophysics.rice.edu/plateboundary/
DPB_map_gifs/quakes.50percent.gif
)

Volcanoes Plotted on World Map

(From http://www.geophysics.rice.edu/plateboundary/volcano.72.gif)

  1. Describe the relationship between the occurrence of earthquakes and volcanoes on these two maps.
  2. Using the relationship established in part B, justify why this association exists.

back to top


Content Benchmark E.8.C.4

Students know the very slow movement of large crustal plates result in geological events.  E/S

Answers to Sample Test Questions

  1. B, DOK level 1
  2. A, DOK level 1
  3. D, DOK level 1
  4. A, DOK level 2
  5. C, DOK level 2
  6. A, DOK level 1
  7. B, DOK level 1
  8. B, DOK level 2
  9. D, DOK level 2

Constructed Response E.8.C.4 Score Rubric:

3 points

Response addresses all parts of the question clearly and correctly.

  1. Volcanoes and earthquakes are found in similar regions or zones around Earth. There is a large concentration of these two events along the west coast of North and South America extending around the Pacific Ocean – Ring of Fire. Geologic events such as earthquakes and volcanoes are most often found near the edges of lithospheric plate boundaries, as here is where plate motion strains/stresses the rocks.
  2. Plate boundaries are crustal zones of weakness providing an easier path for magma from the mantle to head toward Earth’s surface. The center of lithospheric plates are more stable, and less likely to have crustal activity.

2 points

Response addresses all parts of the question and includes only minor errors.

1 point

Response does not address all parts of the question.

0 points

Response is totally incorrect or no response provided.

back to top


Content Benchmark E.8.C.4

Students know the very slow movement of large crustal plates result in geological events.  E/S

Intervention Strategies and Resources

The following is a list of intervention strategies and resources that will facilitate student understanding of this benchmark.


1. Convection Resources

Plate Tectonics II: Plates, Plate Boundaries, and Driving Forces from Visionlearning
This article provides a good overview of the types of plate boundaries, their interactions, and the driving force behind plate movement; convection. This article can be accesses at
http://www.visionlearning.com/library/module_viewer.php?mid=66

Activity: Colorful Convection Currents from Steve Spangler Science
Simple materials and equipment for demonstrating convection currents can be accessed at
http://www.stevespanglerscience.com/experiment/00000031

Visualization: Observe an animation of convection in the mantle from McDougal Littell
This animation shows a cross section of Earth; it illustrates a mathematical model of how convection might occur in the mantle. Diagrams of convection cells in the mantle are often highly simplified, but researchers are finding that the real world is much more complex. http://www.classzone.com/books/earth_science/terc/
content/visualizations/es0805/es0805page01.cfm


2. Plate Tectonics Resources

Plate Tectonics Lesson from Teachers Domain
This site requires user to register, but registration is free. This two-day lesson’s three objectives are; 1. Understand how Earth is dynamic and how moving plates form ocean basins, mountain ranges, islands, volcanoes, and earthquakes, 2. Identify the three general categories of plate boundaries recognized by scientists: convergent, divergent, and transform. 3. Understand how the theory of plate tectonics was developed and supported. Additionally, several links to high-quality multimedia resources are provided at
http://www.teachersdomain.org/resource/ess05.sci.ess.earthsys.lp_platetectonics/

For a comprehensive description of plate motion and types of plate boundaries visit the United States Geological Survey’s online publication This Dynamic Earth: the Story of Plate Tectonics at
http://pubs.usgs.gov/gip/dynamic/understanding.html#anchor15039288


3. Earthquake Resources

Incorporated Research Institutions for Seismology (IRIS)
A GREAT resource for teaching about earthquakes! The following link will take you to the Education and Outreach portion of their website which has a myriad of resources such as; Demonstrations, Posters, Activities, Animations, Presentations, and Videos all classified by audience level with a complete description of the intervention. Over 40 resources are presented here!
http://www.iris.edu/hq/programs/education_and_outreach/resources

Earthquake by Kaye M. Shedlock & Louis C. Pakiser from the USGS
This 20 page online booklet explains the nature and causes of earthquakes, describes techniques used to detect, record, measure, and predict seismic disturbances. Access this resource at
http://pubs.usgs.gov/gip/earthq1/

Earthquakes Overview from Physical Geography
For a comprehensive review of earthquakes, along with a geologic overview of earthquake wave types and measurement go to
http://www.physicalgeography.net/fundamentals/10m.html


4. Volcanoes Resources

United States Geological Society (USGS) Educational Resources Index
This link will take you to the USGS resources index on volcanoes for middle and high school science topics. Activities, simulations, images, and teacher packets are found at
http://education.usgs.gov/common/secondary.htm#volcanoes

Volcanoes Overview from Physical Geography
For a comprehensive review of volcanoes, along with a geology overview of the three classifications of volcanoes visit
http://www.physicalgeography.net/fundamentals/10n.html

Natural Hazards Fact Sheet on Volcanoes from the USGS
This is a 2 page pdf document that provides facts about volcanoes, the threat they pose to society and links for further information. To download this sheet, go to
http://pubs.usgs.gov/fs/2006/3014/2006-3014.pdf

back to top

 

Benchmark
Support Pages

Misconceptions:
Click Here
Sample Questions:
Click Here

Intervention Strategies & Resources:
Click Here

Benchmark Related Vocabulary

Earthquake
Geology
Plate boundary
Plate tectonic
Volcano