TIPS: Targeted Interventions for Proficiency in Science
Main Site »
RPDP Home
Contact Us
Tips Home
Middle School »
High School »
Earth Science

Content Benchmark E.8.A.5
home / earth science / atmospheric process and water cycle /

Earth Science
Atmospheric Process and Water Cycle
  E.8.A.1
  E.8.A.2
  E.8.A.3
  E.8.A.4
  E.8.A.5
  E.8.A.6
Solar System and Universe
Earths Composition and Structure
Content Areas
Nature of Science (NOS)
Life Science
Earth Science
Physical Science

Students know the difference between local weather and regional climate. I/S

“Climate is what you expect. Weather is what you get” according to some meteorologists. But ask a middle school student and you may get the response, “Climate tells you what to buy and weather tells you what to wear” (http://www.ucar.edu/learn/1_2_1.htm). This benchmark is designed to distinguish between these two meteorological terms.


Weather
What exactly is weather? Weather is defined as the immediate or current state of the atmosphere at a specific time and place with respect to conditions such as temperature, relative humidity, precipitation, wind velocity, barometric pressure, etc. If you don’t like the weather, wait a minute, because weather can change quite a bit in a short period of time. For example, when you woke up this morning it could have been sunny with no clouds in the sky, then by lunchtime it could be raining.

Figure 1. Weather map.
(From http://www.weather.com/maps/maptype/
currentweatherusnational/index_large.html
)

For current weather conditions in your area, go to the website referenced above in Figure 1.

For another site that provides detailed weather information for specific areas, go to http://www.accuweather.com/

To view current weather conditions in Canada that can be compared to the weather in the United States, go to
http://www.theweathernetwork.com/

For weather anywhere in the world with regional maps, including links to extreme weather such as tornadoes and hurricanes, go to Weather Underground at http://www.wunderground.com/global/Region/EU/Temperature.html or to
Weather Hub at, http://weatherhub.com/

Weather is what is forecasted and discussed daily in the newspaper and news reports. It is this daily tracking and recording of weather information that is used to determine an area or regional climate.


Tools Used to Measure Weather
In addition to technology such as Doppler radar and satellite images, meteorologists use a variety of tools to measure and record weather. Some common tools are;

Thermometers are used to measure temperature. Temperature is a measure of the average amount of energy present.

Figure 2. Standard outdoor thermometer.
(From http://www.freefoto.com/preview/16-11-1?ffid=16-11-1)

For information on how to use a thermometer, go to http://www.kidzoneweather.com/Tools.html

Psychrometers are used to measure relative humidity and dew point. Relative humidity is given as a percentage and is the amount of moisture the air contains compared to the amount of moisture the air could contain at a specific temperature. The dew point is the temperature air must reach in order for the air to reach 100% relative humidity.

For more information on Dew Point and Relative humidity, visit
http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/relhum.html

Figure 3. Digital psychrometer
(From http://www.toolexperts.com/DSP.html)

Figure 4. Sling Psychrometer.
(From http://itsidiy.concord.org/activities/109)

The standard sling psychrometer consists of two attached thermometers. One of the thermometers will have a wet “sock” placed over its bulb and is known as the wet bulb, the other has no sock and is know as the dry bulb. The device is then spun in order to speed up evaporation from the sock on the wet bulb. Once measurements have been obtained, a chart is used to determine relative humidity and dew point.

For instructions on how to use a sling psychrometer, go to http://rain.aos.wisc.edu/~gpetty/aos330/lab1_psychro.pdf.

For more information on relative humidity and dew point, and for a relative humidity and dew point calculator, go to
http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/relhum.html ,

For more information on humidity and relative humidity, and for an additional relative humidity calculator, go to
http://www.bom.gov.au/lam/humiditycalc.shtml

A Rain gage (or gauge) is used to measure precipitation. In certain regions snow gages are also used.

Figure 5. Drum rain gage.

Figure 6. Bucket rain gage

(From http://www.seed.slb.com/en/scictr/lab/engineer/rain_gauge/index.htm)

Figure 7. Standard rain gage
(From http://www.compleatnaturalist.com/mall/professional_rain_gauge.htm)

A rain gage is a fairly simple tool that is designed to capture all the rain that falls into a given area. Typically it is a cylinder that is 3 to 4 inches across that funnels all the rain into a collection can, or graduated cylinder that is calibrated to read the inches of rainfall received. Once common measure of rainfall is in inches, and stands for the height of a column of water that has fallen on a square inch of land. Specifically, if the weather reports 3 inches of rain have fallen in the past 23 hours, it would mean that for every square inch of surface area there would have been a column of water 3 inches tall standing on it, if it had not run off or soaked into the ground.

For information on how to use a rain gauge, go to http://ccc.atmos.colostate.edu/~hail/howto/help/rain.htm

For information on how to use a snow gauge, go to http://ccc.atmos.colostate.edu/~hail/howto/help/snow.htm


Anemometers are used to measure wind velocity.

Figure 8. Anemometer.
(From http://student.britannica.com/comptons/art-90644
/The-revolving-cup-electric- anemometer-is-used-
to-measure-wind?&articleTypeId=31
)

The electronic anemometer pictured above operates on the simple design that the speed the wind is blowing can be measured by how fast the cups rotate. A simple mechanical anemometer consists of 4 cups, 3 of one color, and one of a contrasting color. By simply counting the number of times the odd colored cup spins around the axis and referring to a chart that was provided with the anemometer the wind speed could be easily determined.

For information on how to use an anemometer, go to
http://www.kidzoneweather.com/Tools.html

Barometers are used to measure atmospheric, or barometric, pressure. Barometric pressure is the pressure exerted on the Earth by the mass of the Earth’s atmosphere. The higher the mass, the higher the barometric pressure will be in a given area, and the lower the mass, the lower the barometric pressure will be in a given area.

For more information on barometric pressure, go to http://www.challengers101.com/Pressure.html

Figure 9. Barometer.
(From http://www.barometers.us/marine-barometer-400.jpg)

Wind vanes and wind socks are used to measure wind direction.

Figure 10. Wind vane.
(From http://www.westcoastweathervanes.com/Weathervane
-Miscellaneous-Pages/NewsUpdates.htm
)

Weather or wind vanes are designed to indicate the direction from which the wind is blowing. Wind direction is always stated in terms of where the wind is coming from not where it is going. So, in figure 11, the arrow and face of the dragon is pointed essentially toward the west. The wind would be said to be a west wind, or westerly wind.

For information on how to use a wind vane, go to
http://www.ciese.org/curriculum/weatherproj2/en/docs/windvane.shtml

Figure 11. Wind sock.
(From http://www.aerocovers.com/prod11_wind_sock.htm)

Wind socks are similar to weather/wind vanes as they indicate the direction the wind is blowing. They also have the added feature of indicating the approximate strength or velocity of the wind. As the wind speed increases the sock will become more erect, the straighter the sock is the faster the wind. Wind socks can commonly be seen near runways, to help pilots determine wind conditions on the ground, and on roadways that are prone to high winds, to help high profile vehicles avoid dangerous conditions that could flip them over or force them off the road.

For information on how to use a wind sock, go to http://www.windpower.org/en/kids/choose/nacelle/wvassign.htm


Climate
What exactly is climate? Climate is defined as the average weather in a given location on Earth over a long time period, usually no less than thirty years. Because climate is an average, it takes into account unusual or extreme conditions such as drought, periods of intense rain, and storms such as hurricanes, as well as the seasons.

When defining a regional climate there are two main variables considered; the average amount of precipitation the area receives and the average air temperature. Climate is also affected by the ocean’s storage of carbon dioxide and heat energy, the region’s proximity to the ocean, and a region’s elevation. The two main variables of precipitation and air temperature are also greatly influenced by the region’s latitude. In fact, the world is broken down into three basic climate groups determined by latitude. These climate groups then determine the area’s biome which includes the type of animals, plants, and soil present.

Group I: Low-latitude Climates
  Includes rainforest and savanna biomes
Group II: Mid-latitude Climates
  Includes steppe, chaparral, grassland, and deciduous forest biomes
Group III: High-latitude Climate
  Includes taiga, tundra, and alpine biomes

Tundra Deciduous Forest Savanna
Taiga
Chaparral
Rainforest
Grasslands Desert Alpine
    Desert-scrub
   

Figure 12. World Biomes.
(From http://www.blueplanetbiomes.org/world_biomes.htm)

Like weather, climates can also change. In fact, climates will change if the variables that determine climate change. But, because climate is the average of weather conditions over an extended period of time, it takes a many years to register that change.

The following websites provide good definitions and explanations of climate.

Information on climate variability can be found at
http://science.hq.nasa.gov/oceans/system/climate.html

For information on world biomes, go to
http://www.blueplanetbiomes.org/world_biomes.htm

For information on weather and climate, go to http://epa.gov/climatechange/kids/climateweather.html

Weather and climate basics is located at http://eo.ucar.edu/basics/cc_1.html

An interactive climate map that shows average precipitation and temperature for different cities in different regions can be found at
http://www.uwsp.edu/geo/faculty/ritter/interactive_climate_map/climate_map.html

Climate information on just about every city in the world is accessed at
http://www.worldclimate.com

Information on climate change with a focus on Antarctica, including an excellent graphic and graph of carbon sinks is found at http://www.coolantarctica.com/Antarctica%
20fact%20file/antarctica%20environment/climate
_graph/antarctica_climate_graph_comparitive.htm


Distinguishing Between Weather and Climate
Consider the following example when thinking of the difference between climate and weather. The southeast United States has been experiencing drought conditions. In Atlanta, rainfall has been up to sixteen inches below normal. This does not mean that the southeast has become a desert! Remember, weather is variable and can change day by day, minute by minute, but climate is more consistent. Climate, because it is more consistent, can be used as a tool to help forecast what conditions may be in a certain area during a certain time of the year.

“In other words, look out your window any day, any time, and you see weather. Look out your window every day for 30 years, observe the weather each day, and you can determine the climate”

For a link to regional climate zones in the United States, go to http://weathereye.kgan.com/cadet/climate/climate.html

For information on a variety of weather and climate topics, go to http://www.weatherquestions.com/


Human Impact on Weather and Climate Change

Along with natural factors, such as altitude and location by latitude, humans can impact the weather, and therefore regional climate change. The following are some ways humans can influence weather and climate.


Urban Heat Island
One way humans influence weather and climate is by construction. Cities experience what is known as an urban heat island. As rural land is developed into a metropolitan area the increased concrete, asphalt, and other building materials trap thermal energy. This, along with the decreased vegetation and human activity results in “waste heat”, which causes the area to have higher temperatures than the undeveloped land surrounding it.

Figure 13. Urban Heat Island.
(From http://www.weatherquestions.com/What_is_the_urban_heat_island.htm)

Figure 14. Graph depicting the temperature increase
due to the urban heat island effect.
(From http://www.technovelgy.com/ct/Science-Fiction-News.asp?NewsNum=548)


Thermal Inversion
Due to solar radiation and the conversion of this light energy (insolation) into thermal energy, usually the surface of the Earth is warmer then the air directly above the surface. Furthermore, the air directly above the surface is warmer than the air found much higher up in the atmosphere. Typically, differences in the amount thermal energy found at Earth’s surface and the air above it serves to heat the air in contact with the surface. The higher in the air column you go the cooler the air tends to become. A thermal inversion is caused when the layer of air closest to the surface is cooler than the air above it. Then a denser layer of cool air is trapped below a layer of less dense warm air. This inversion causes the pollutants in the cool air also to be trapped, causing the brown haze sometimes experienced in the Las Vegas valley and in other urban areas.

Figure 15. Thermal inversion.
(From http://www.deq.state.mt.us/AirMonitoring/citguide/understanding.asp)

Figure 16. Smog in Mexico City during a thermal inversion.
(From http://encarta.msn.com/media_461516754_
761570933_-1_1/Thermal_Inversion.html
)

For more detail and diagrams showing thermal inversions, go to http://www.physicalgeography.net/fundamentals/7o.html

For an animation of normal conditions compared to a thermal inversion, go to http://www.chaseireland.org/Thermal%20Inversion.htm


Deforestation
In areas that have experienced deforestation the temperatures will rise. Additionally, with the loss of plants there is a loss of evaporation and a subsequent reduction in regional and possibly global rain patterns. Deforestation also increases the amount of carbon, a greenhouse gas, in the atmosphere as the plants are no longer available to remove the carbon, in the form of CO2. Some rainforests, which store carbon, are referred to “carbon sinks”. A carbon sink is an area that absorbs more carbon than it releases. The opposite of a carbon sink is a carbon source. Carbon sources increase the release of carbon into the atmosphere and this is exacerbated as the majority of deforestation is created by burning the plant material, which could result in an accentuation of the greenhouse effect known as Global Warming.

Figure 17. Deforestation in Rondonia, Brazil from
September 9, 2000 to September 26, 2006.
(From http://earthobservatory.nasa.gov/Newsroom/
NewImages/images.php3?img_id=17600
)

For more information on the deforestation of the Amazon basin of South America, along with an animation of the change in the rainforest from the year 1984 to the year 2000 in the Santa Cruz region of Bolivia, go to
http://whyfiles.org/238earthday/index.php?g=3.txt


Fires
Forest fires introduce additional greenhouse gas into the atmosphere by two different means, through the burning process which releases CO2 and CO, and through the loss of the plants that act as a storehouse for carbon. Fires also add visual pollutants into the atmosphere which can have a limited, impact on the amount of solar insolation reaching the Earth’s surface. The smoke particles, however, can act as the nuclei for condensation and subsequently rain drops.

Figure 18. Fire in Montana's Bitterroot Valley
(From http://apod.nasa.gov/apod/ap001121.html)

back to top


Content Benchmark E.8.A.5

Students know the difference between local weather and regional climate. I/S

Common misconceptions associated with this benchmark

1.Students inaccurately assume that a hot summer can predict a cold winter.

Weather forecasting is a complicated process. The fact that one season is warm cannot be used as an accurate indicator of what the weather will be like several months later.

For an online guide to weather forecasting, go to
http://ww2010.atmos.uiuc.edu/(Gh)/guides/mtr/fcst/home.rxml


2.Students incorrectly believe that animal behavior or the thickness of animal fur can predict weather.

The behavior of a groundhog in February or the thickness of a dog’s coat does not predict weather. For various data and statistics on climate trends, go to
http://cdiac.ornl.gov/trends/trends.htm


3.Students inaccurately think cold temperatures are caused by snow, ice, and daytime cloud cover.

The presence of snow and ice do not create temperature, however they can influence the temperature in a few different ways. Snow and ice have a high albedo, the highly reflective surface absorbs little of the suns energy compared to a darker surface such as soil. Additionally, as liquid water found in clouds freezes it releases energy, and although the amount of energy released per snow flake is minuscule the cumulative amount can be sufficient to raise the air temperature or at least stabilize it so it does not continue to drop.

To learn more about snow formation and the effect on weather, go to
http://answers.yahoo.com/question/index?qid=1005122500721.

Cloud cover, like snow cover can act to reflect some of the incoming solar radiation back into space. The reflected energy is not available to warm the soil resulting in cooler day time temperatures compared to what would be if there were no cloud cover.

For more on how clouds specifically effect solar radiation, go to http://www.uwsp.edu/geo/faculty/ritter/geog101/textbook/
temperature/temperature_radiation_heat_p_2.html

For additional information on how atmospheric temperature is determined, go to http://www.uwsp.edu/geo/faculty/ritter/geog101/
textbook/temperature/title_page.html


4.Students mistakenly believe that the greenhouse effect is the same thing as global warming.

The way a car or a greenhouse is heated is primarily caused by trapping energy by limiting convection. Global warming and the greenhouse effect are not the same thing. Global warming is an increase in the average global temperature, which can be impacted when there is an increase in the greenhouse effect.

For an animated explanation of the greenhouse effect and global warming, go to http://earthguide.ucsd.edu/earthguide/diagrams/greenhouse/


5.Students have difficulty understanding the greenhouse effect, thinking it acts like a blanket or like the heating of the interior of a car.

Certain gases in our atmosphere, referred to as greenhouse gasses, retain thermal energy and reflect energy back to the Earth’s surface. This causes what is referred to as the greenhouse effect, or what causes Earth to be warmer than it would be without an atmosphere. This is different from the blanket or greenhouse idea, as a blanket or greenhouse increases temperature by limiting convection, as was mentioned in the previous misconception.

For more information on the greenhouse effect, go to http://www.physicalgeography.net/fundamentals/7h.html


All misconceptions above were summarized from “Children's misconceptions about weather: A review of the literature”, by Laura Henriques.

For more information on these misconceptions and literature review, go to http://www.csulb.edu/~lhenriqu/NARST2000.htm

For general misconceptions and questions about climate changes, go to
http://www.whoi.edu/page.do?pid=12455&tid=282&cid=10149

For information on misconceptions on other meteorology topics, go to http://www.ems.psu.edu/~fraser/BadMeteorology.html, and
http://serc.carleton.edu/introgeo/gallerywalk/misconceptions.html

back to top


Content Benchmark E.8.A.5

Students know the difference between local weather and regional climate. I/S

Sample Test Questions

1st Item Specification: Know how weather systems work and how there are daily variations.

Depth of Knowledge Level 1

  1. Which statement best describes weatherWeather is
    1. very easy to predict, as the atmosphere is very stable.
    2. an average of the atmospheric conditions in an area over a long period of time.
    3. the current conditions of the atmosphere at a certain time and place.
    4. an average of the atmospheric conditions in over a short period of  time.
  1. If a body of air has reached the dew point, what is the relative humidity?
    1. 10%
    2. 50%
    3. 80%
    4. 100%
  1. If a cold front moves into an area, how might the weather conditions be affected?  There will be
    1. stormy conditions.
    2. increased temperatures.
    3. snow or sleet.
    4. no change in the weather.
  1. If an area is experiencing a high pressure system, what type of weather would most likely be present?
    1. High levels of precipitation
    2. Cloudy skies, strong winds
    3. Cooler temperatures
    4. Clear skies, light winds

Depth of Knowledge Level 2

  1. Why might a meteorologist compare a new weather map to one that is a day old?
    1. The weather conditions yesterday can accurately predict what type of weather will occur today.
    2. A comparison of the maps can help determine how fast fronts are moving.
    3. Meteorologists never compare current weather maps with day old maps.
    4. If an area experienced precipitation one day, it will experience precipitation the next day.
  1. Use the weather map below showing a precipitation forecast for the Southwestern United States to answer the question that follows.


(Map reference http://www.weather.com/weather/local/89123?lswe=
89123&lwsa=WeatherLocalUndeclared&from=whatwhere
)

  1. Which statement best describes the type of weather being experienced in the majority of the Southwestern United States?
    1. Sunny and clear
    2. Icy with fog present
    3. Cloudy with precipitation
    4. Strong storms occurring
  1. Use the weather map below showing weather conditions in the United States from May 7th  to answer the question that follows.

  1. In which direction is the warm front near the Great Lakes moving?
    1. North
    2. South
    3. East
    4. West


2nd Item Specification: Compare regional climates and describe how climate regions are influenced.

Depth of Knowledge Level 1

  1.  A region’s climate is
    1. not affected by daily weather.
    2. changed only by human activity.
    3. an average of a region’s weather over a short period of time.
    4. an average of a region’s weather over a long period of  time.
  1. When determining a region’s climate, the two main variables considered are the average
    1. air temperature and the size of the region.
    2. precipitation and average air temperature.
    3. wind speed and the types of animals present.
    4. barometric pressure and the average precipitation.
  1. Which climate zone has the highest average temperature?
    1. Chaparral
    2. Polar
    3. Temperate
    4. Tundra


Depth of Knowledge Level 2

  1. In what way do temperate deserts and tropical deserts differ? Temperate deserts
    1. have more severe summers than tropical deserts.
    2. do not receive as much precipitation as tropical deserts.
    3. experience higher temperatures than tropical deserts.
    4. experience lower temperatures than tropical deserts.
  1. The graph below shows the average monthly temperatures in several cities.  Use this graph to answer following question.


 (Derived from http://www.coolantarctica.com/Antarctica%20fact%20file/antarctica%20
environment/climate_graph/antarctica_climate_graph_comparitive.htm
)

  1. Based on the average temperatures, which two areas have the most similar climates?
    1. Sydney and New York
    2. McCurdo and Amundsen Scott
    3. Vostok and Amundsen-Scott
    4. London and Sydney


3rd Item Specification: Recognize and use weather instruments to determine local weather.

Depth of Knowledge Level 1

  1. Use the illustrations of weather tools below to answer the question.
Figure 1 Figure 3
   
Cup.jpg (27247 byte)
Figure 2 Figure 4
  1. Which weather tool would be used to measure wind speed?
    1. Tool #1
    2. Tool #2
    3. Tool #3
    4. Tool #4
  1. Which weather tool is used to measure air pressure?
    1. Barometer
    2. Anemometer
    3. Thermometer
    4. Psychrometer


Depth of Knowledge Level 2

  1. Use the graph showing the relationship between temperature and relative humidity to answer the question that follows.

Temperature in Degrees Celsius vs. Amount of
Water Vapor in Grams per Cubic Meter


(Graph reference http://www.bom.gov.au/lam/humiditycalc.shtml)

  1. As air temperature increases the amount of water vapor that can be held
    1. decreases.
    2. increases.
    3. stays the same.
    4. increases and then decreases.
  1. Which weather tool is used to measure the average energy of the particles present?
    1. Barometer
    2. Anemometer
    3. Thermometer
    4. Psychrometer


4th Item Specification: Understand the result of human impact on local weather and climate (e.g., heat island of cities, deforestation, thermal inversion, and fires).

Depth of Knowledge Level 1

  1.  Which of the following is NOT a way humans directly impact weather and climate?
    1. Deforestation
    2. Fencing grasslands
    3. Burning of fossil fuels
    4. Construction of new buildings
  1. Deforestation and construction increases the heat island effect by all of the following EXCEPT
    1. There are fewer areas for agriculture, resulting in less food for people to eat.
    2. Reducing the amount of evaporation and the cooling effects of shading.
    3. The construction of buildings increase radiated energy and reduces air flow.
    4. Waste heat created by humans in the form of vehicle, industrial and residential use increases temperatures.
  1. Use the graph showing an Urban Heat Island Profile to answer the question that follows.


(Profile reference http://www.epa.gov/hiri/about/index.html)

  1. Where are temperatures the highest?
    1. Suburban areas
    2. Rural areas
    3. Downtown areas
    4. Commercial areas


Depth of Knowledge Level 2

  1. Trees and vegetation are removed from a rural area in order to construct a large shopping mall.  What will happen to the average temperatures in the shopping mall area? Average temperatures will
    1. increase.
    2. decrease.
    3. not change.
    4. fluctuate randomly.
  1. Use the graph showing an Urban Heat Island Profile to answer the question that follows.


(Profile reference http://www.epa.gov/hiri/about/index.html)

  1. What affect does decreasing vegetation have on temperatures?  With decreasing vegetation, temperatures will
    1. decrease.
    2. increase.
    3. stay the same.
    4. increase and then decrease.


Constructed Response E.8.A.5

  1. The map below shows locations of different climates in the world.

World Climate Map
(From http://www.mapsofworld.com/world-maps/world-climate-map.html)

    1. Describe the similarities between latitude and climate? Provide examples to support your answer.
    2. Compare the climate of North Africa to that of The Northern United States of America. Give reasons for the differences in climate.

back to top


Content Benchmark E.8.A.5

Students know the difference between local weather and regional climate. I/S

Answers to Sample Test Questions

  1. C, DOK Level 1
  2. D, DOK Level 1   
  3. A, DOK Level 1
  4. D, DOK Level 1
  5. B, DOK Level 2
  6. C, DOK Level 2
  7. A, DOK Level 2
  8. D, DOK Level 1
  9. B, DOK Level 1
  10. A, DOK Level 1
  11. D, DOK Level 2
  12. C, DOK Level 2
  13. B, DOK Level 1
  14. A, DOK Level 1
  15. B, DOK Level 2
  16. C, DOK Level 2
  17. B, DOK Level 1
  18. A, DOK Level 1
  19. C, DOK Level 1
  20. A, DOK Level 2
  21. B, DOK Level 2

Constructed Response E.8.A.5 Score Rubric

3 points

Response addresses all parts of the question clearly and correctly.

  1. Noting that similar latitudes have similar climates.  For example, Northern Canada, and Northern Asia, located on or near 60 degrees N latitude both having snow, fully humid and cool summers, or the parts of South America, Africa and Australia along 10 degrees S latitude all being Aw – or equatorial deserts. 
  2. B. When comparing North Africa, and Northern USA there should be a mention of the differences in latitude, 40 degrees N, above the Tropic of Cancer, versus 30 degrees N below the Tropic of Cancer.  The closer to the equator, the higher the temperatures will be due to the increased amount of radiation.  The farther north the location, the less direct radiation received, therefore lower temperatures. Because of this, N. Africa which is closer to the equator will have much higher temperatures than N. USA.  Also N. Africa has an arid climate, which means there is little precipitation.  N. USA has a more humid climate which means there is more precipitation.    

2 points

 Response addresses all parts of the question and includes only minor errors.

1 point

 Response does not address all parts of the question. 

0 points

 The response is totally incorrect or no response provided. 

back to top


Content Benchmark E.8.A.5

Students know the difference between local weather and regional climate. I/S

Intervention Strategies and Resources

The following is a list of intervention strategies and resources that will facilitate student understanding of this benchmark.

1.What Happens When a Storm Comes?
Click on the link that follows to get to a page that contains instructions to make simple weather tools out of household items. Instruments include; wind, air pressure, moisture, and temperature devices.

To access these instructions please visit http://www.miamisci.org/hurricane/weathertools.html


2.Scholastic: Weather Watch
This is another site that provides instruction for construction of simple weather tools. Also included is information on a snow gauge if that is appropriate for your area. Tools include an; anemometer, wind vane, barometer, rain gauge, snow gauge, and thermometer. Information about each tool along with instructions for building it and using it in an experiment are provided.

To access these instructions please visit http://teacher.scholastic.com/activities/wwatch/gather_data/


3.Differences Between Weather and Climate
University Corporation of Atmospheric Research
This activity provides students with the opportunity to collect weather data over a period of time and apply data analysis to determine how knowledge of local weather changes relates to local climates.

To access this activity go to http://www.ucar.edu/learn/1_2_2_8t.htm


4.The Frozen Desert: Graphing and Comparing Climates
This lesson plan has students graph weather data that influences climate, and then has students use these graphs to compare different climates, including the climate in Antarctica.

To access this activity go to http://tea.armadaproject.org/activity/tremblay/thefrozendesert_main.html


5.Climate vs. Weather – Print your Climatoscope!
Visit this site to uncover the weather/climate conditions on your birthday! The surface climate is the average or normal state of Earth's surface conditions. The surface weather is the actual state of the Earth's surface at a given time. Since this is usually close to the climate, it is most easily shown as the departure from normal conditions, or an anomaly.

To view a climatoscope for conditions on your birthday, go to
http://ocp.ldeo.columbia.edu/climatekidscorner/sst.shtml


6.EPA Climate Change Kids Site
“Weather is all around us. Weather may be one of the first things you notice after you wake up. Chances are, if it is cold and snowing, you'll wear a jacket when you go outside. If it's hot and sunny, you may wear shorts. Sounds pretty simple, right?, But what about climate?, How is it different from weather?, And what is weather, exactly?”. These issues are explored at Climate Change Kids Site.

For basic information on weather, climate, and climate change, as well as an animation depicting how changes in the water cycle can affect climate change, go to http://epa.gov/climatechange/kids/climateweather.html


7.National Oceanic and Atmospheric Administration (NOAA)
The one-stop shop for everything related to weather!

For information on weather and climate including links to active weather alerts, local, and national weather organizations, go to
http://www.noaa.gov/


8.Northeast Regional Climate Center
Links to the National Climatic Data Center, Regional Climate Center, and a host of more specialized locations along with an extensive list of links to related “weather” sites including; Climate Variability, and Weather and Climate Educational Links can be accessed at,
http://www.nrcc.cornell.edu/weather_climate_links.html

back to top

Benchmark
Support Pages

Misconceptions:
Click Here
Sample Questions:
Click Here

Intervention Strategies & Resources:
Click Here

Benchmark Related Vocabulary

Average precipitation
Average temperature
Climate
Cold front
Season
Stationary front
Warm front
Weather
Weather map